Working Paper No. 09-29 Predictive Density Construction and Accuracy Testing with Multiple Possibly Misspecified Diffusion Models
نویسندگان
چکیده
This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspecified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing predictive densities for one-factor and stochastic volatility models. Then, we construct accuracy assessment tests that are in the spirit of Diebold and Mariano (1995) and White (2000). In order to establish the asymptotic properties of our tests, we also develop a recursive variant of the nonparametric simulated maximum likelihood estimator of Fermanian and Salanié (2004). In an empirical illustration, the predictive densities from several models of the one-month federal funds rates are compared. JEL classification: C22, C51.
منابع مشابه
Predictive Density Construction and Accuracy Testing with Multiple Possibly Misspecified Diffusion Models∗
This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspecified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing predictive densities for one-factor and stochastic volatility models. Then, we construct accuracy assessment tests that are in the spirit of Diebold and Mariano (1995) and White (2...
متن کاملDensity and Conditional Distribution Based
The technique of using densities and conditional distributions to carry out consistent specification testing and model selection amongst multiple diffusion processes have received considerable attention from both financial theoreticians and empirical econometricians over the last two decades. One reason for this interest is that correct specification of diffusion models describing dynamics of f...
متن کاملWORKING PAPERS SERIES WP04-16 Predictive Density Accuracy Tests
This paper outlines a testing procedure for assessing the relative out-of-sample predictive accuracy of multiple conditional distribution models, and surveys existing related methods in the area of predictive density evaluation, including methods based on the probability integral transform and the Kullback-Leibler Information Criterion. The procedure is closely related to Andrews’ (1997) condit...
متن کاملBootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model
In recent years it has become apparent that many of the classical testing procedures used to select amongst alternative economic theories and economic models are not realistic. In particular, researchers have become more aware of the fact that parameter estimation error and data dependence play a crucial role in test statistic limiting distributions, a role which had hitherto been ignored to a ...
متن کاملPerformance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures
Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...
متن کامل